skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Ziwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 7, 2025
  2. Abstract Modern life is essentially homochiral, containing D-sugars in nucleic acid backbones and L-amino acids in proteins. Since coded proteins are theorized to have developed from a prebiotic RNA World, the homochirality of L-amino acids observed in all known life presumably resulted from chiral transfer from a homochiral D-RNA World. This transfer would have been mediated by aminoacyl-RNAs defining the genetic code. Previous work on aminoacyl transfer using tRNA mimics has suggested that aminoacylation using D-RNA may be inherently biased toward reactivity with L-amino acids, implying a deterministic path from a D-RNA World to L-proteins. Using a model system of self-aminoacylating D-ribozymes and epimerizable activated amino acid analogs, we test the chiral selectivity of 15 ribozymes derived from an exhaustive search of sequence space. All of the ribozymes exhibit detectable selectivity, and a substantial fraction react preferentially to produce the D-enantiomer of the product. Furthermore, chiral preference is conserved within sequence families. These results are consistent with the transfer of chiral information from RNA to proteins but do not support an intrinsic bias of D-RNA for L-amino acids. Different aminoacylation structures result in different directions of chiral selectivity, such that L-proteins need not emerge from a D-RNA World. 
    more » « less
  3. We propose a new class of haptic devices that provide haptic sensations by delivering liquid-stimulants to the user's skin; we call this chemical haptics. Upon absorbing these stimulants, which contain safe and small doses of key active ingredients, receptors in the user's skin are chemically triggered, rendering distinct haptic sensations. We identified five chemicals that can render lasting haptic sensations: tingling (sanshool), numbing (lidocaine), stinging (cinnamaldehyde), warming (capsaicin), and cooling (menthol). To enable the application of our novel approach in a variety of settings (such as VR), we engineered a self-contained wearable that can be worn anywhere on the user's skin (e.g., face, arms, legs). Implemented as a soft silicone patch, our device uses micropumps to push the liquid stimulants through channels that are open to the user's skin, enabling topical stimulants to be absorbed by the skin as they pass through. Our approach presents two unique benefits. First, it enables sensations, such as numbing, not possible with existing haptic devices. Second, our approach offers a new pathway, via the skin's chemical receptors, for achieving multiple haptic sensations using a single actuator, which would otherwise require combining multiple actuators (e.g., Peltier, vibration motors, electro-tactile stimulation). We evaluated our approach by means of two studies. In our first study, we characterized the temporal profiles of sensations elicited by each chemical. Using these insights, we designed five interactive VR experiences utilizing chemical haptics, and in our second user study, participants rated these VR experiences with chemical haptics as more immersive than without. Finally, as the first work exploring the use of chemical haptics on the skin, we offer recommendations to designers for how they may employ our approach for their interactive experiences. 
    more » « less
  4. Abstract Conjugated polymer‐based block copolymers (CP‐BCPs) are an unexplored class of materials for organic thermoelectrics. Herein, the authors report on the electronic conductivity (σ) and Seebeck coefficient (α) of a newly synthesized CP‐BCP, poly(3‐hexylthiophene)‐block‐poly (oligo‐oxyethylene methacrylate) (P3HT‐b‐POEM), upon solution co‐processing with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and subsequently vapor‐doping with a molecular dopant, 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ). It is found that the addition of the hydrophilic block POEM greatly enhances the processability of P3HT, enabling homogeneous solution‐mixing with LiTFSI. Notably, interactions between P3HT‐b‐POEM with ionic species significantly improve molecular order and unexpectedly cause electrical oxidizing doping of P3HT block both in solution and solid‐states, a phenomenon that has not been previously observed in Li‐salt containing P3HT. Vapor doping of P3HT‐b‐POEM‐LiTFSI thin films with F4TCNQ further enhances σ and yields a thermoelectric power factorPF=α2σ of 13.0 µW m−1 K−2, which is more than 20 times higher than salt‐free P3HT‐b‐POEM sample. Through modeling thermoelectric behaviors of P3HT‐b‐POEM with the Kang‐Snyder transport model, the improvement inPFis attributed to higher electronic charge mobility originating from the enhanced molecular ordering of P3HT. The results demonstrate that solution co‐processing CP‐BCPs with a salt is a powerful method to control structure and performance of organic thermoelectric materials. 
    more » « less